Downregulation of Annexin A1 by short hairpin RNA inhibits the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells

نویسندگان

  • XINYUAN PAN
  • LIU PENG
  • GUOQIAN YIN
چکیده

Annexin A1 (ANX A1) is essential in cell differentiation and proliferation. However, the role of ANX A1 in bone marrow-derived mesenchymal stem cell (BM-MSC) osteogenic differentiation and proliferation remains unclear. To investigate whether endogenous ANX A1 influences BM-MSC proliferation and osteogenic differentiation, a stable ANX A1-knockdown cell line was generated using short hairpin RNA (shRNA). The proliferation rate of BM-MSCs was analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide proliferation assay. Additionally, BM-MSCs were differentiated into osteoblasts and subsequently used to isolate total proteins to analyze the expression of ANX A1. Cell differentiation was assayed using Alizarin red S staining. The results revealed that the knockdown of ANX A1 in BM-MSCs exerts no apparent effect on the proliferation rate under normal conditions, however, following exposure to an osteogenic medium, downregulation of ANX A1 protected cells from the effect of osteogenic medium-induced inhibition of cell proliferation. Silencing ANX A1 with shRNA significantly inhibited the phosphorylation of extracellular signal-regulated kinase 1/2 and the expression of differentiation-associated genes (including runt-related transcription factor 2, osteopontin and osteocalcin) during osteogenesis and resulted in reduced differentiation of BM-MSCs. The results indicate the potential role of ANX A1 in the regulation of BM-MSC proliferation and osteogenic differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The osteogenic differentiation stimulating activity of Sea cucumber methanolic crude extraction on rat bone marrow mesenchymal stem cells

Objective(s):Sea cucumber derived bioactive compound is considered efficient in treatment of bone disorders. This study was performed   to evaluate the effect of this extract on differentiation of rat bone marrow mesenchymal stem cells (rBMMSc) into osteogenic lineage. Materials and Methods: Isolated rBMMSc were grown in DMEM supplemented with 10% FBS. The cells were exposed to different concen...

متن کامل

Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor

Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...

متن کامل

Effect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture

Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...

متن کامل

Differentiation of Adipose-derived Stem Cells into Schwann Cell Phenotype in Comparison with Bone Marrow Stem Cells

Objective(s) Bone marrow is the traditional source of human multipotent mesenchymal stem cells (MSCs), but adipose tissue appears to be an alternative and more readily available source. In this study, rat adipose-derived stem cells (ADSCs) were induced to differentiate into Schwann-like cells and compared with rat bone marrow stem cells (BMSCs) for their Schwann-like cells differentiation pote...

متن کامل

Biological behaviors of muscarinic receptors in mesenchymal stem cells derived from human placenta and bone marrow

Objective(s): Cells perform their functional activities by communicating with each other through endogenous substances and receptors. Post-translation, stem cells function properly in new host tissue by carrying specific cell surface receptors. We aimed to characterize muscarinic receptor subtypes in mesenchymal stem cells (MSCs) together with osteogenic and adipogenic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2015